Search results
Results From The WOW.Com Content Network
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts
The SI unit of quantity of electric charge is the coulomb (symbol: C). The coulomb is defined as the quantity of charge that passes through the cross section of an electrical conductor carrying one ampere for one second. [6] This unit was proposed in 1946 and ratified in 1948. [6] The lowercase symbol q is
Since electric force, in turn, is the product of the electric charge and the known electric field, the electric charge of the oil drop could be accurately computed. By measuring the charges of many different oil drops, it can be seen that the charges are all integer multiples of a single small charge, namely e .
volume charge density: coulomb per cubic meter (C/m 3) resistivity: ohm meter (Ω⋅m) sigma: summation operator area charge density: coulomb per square meter (C/m 2) electrical conductivity: siemens per meter (S/m) normal stress: pascal (Pa) scattering cross section: barn (10^-28 m^2) surface tension: newton per meter (N/m)
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J ...
Reference should be made to codes and standards. For example, IEC 60027, and Letter Symbols in Electrical Technology. Here are tables of widely accepted symbols. They are meant to be a guideline: Using the same symbols for the same things in different articles will increase their consistency, making them easier to understand and to improve.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
English: Computed drawings of four different types of electric dipoles. Upper left: An ideal point-like dipole. The field shape is scale invariant and approximates the field of any charge configuration with nonzero dipole moment at large distance. Upper right: Discrete dipole of two opposite point charges at finite distance, a physical dipole.