Search results
Results From The WOW.Com Content Network
The elements of this symmetry group should not be confused with the "symmetry element" itself. Loosely, a symmetry element is the geometric set of fixed points of a symmetry operation. For example, for rotation about an axis, the points on the axis do not move and in a reflection the points that remain unchanged make up a plane of symmetry.
The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2] For continuous symmetric spherical, Mir M. Ali gave the following definition.
In quantum chemistry, a configuration state function (CSF), is a symmetry-adapted linear combination of Slater determinants. A CSF must not be confused with a configuration. In general, one configuration gives rise to several CSFs; all have the same total quantum numbers for spin and spatial parts but differ in their intermediate couplings.
In chemistry, molecular symmetry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties , such as whether or not it has a dipole moment , as well ...
The Newton and the Schrödinger equations in the absence of the macroscopic magnetic fields and in the inertial frame of reference are T-invariant: if X(t) is a solution then X(-t) is also a solution (here X is the vector of all dynamic variables, including all the coordinates of particles for the Newton equations and the wave function in the configuration space for the Schrödinger equation).
will always be greater than because the model is not fitted to the reflections that contribute to , but the two statistics should be similar because a correct model should predict all the data with uniform accuracy. If the two statistics differ significantly then that indicates the model has been over-parameterized, so that to some extent it ...
Symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. [17] This concept has become one of the most powerful tools of theoretical physics, as it has become evident that practically all laws of nature originate in symmetries.
The symmetry number or symmetry order of an object is the number of different but indistinguishable (or equivalent) arrangements (or views) of the object, that is, it is the order of its symmetry group. The object can be a molecule, crystal lattice, lattice, tiling, or in general any kind of mathematical object that admits symmetries.