Search results
Results From The WOW.Com Content Network
Only five stable nuclides contain both an odd number of protons and an odd number of neutrons. The first four "odd–odd" nuclides occur in low mass nuclides, for which changing a proton to a neutron or vice versa would lead to a very lopsided proton–neutron ratio (2 1 H, 6 3 Li, 10 5 B, and 14 7 N; spins 1, 1, 3, 1).
Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force. The diameter of the nucleus is in the range of 1.70 fm (1.70 × 10 −15 m [7]) for hydrogen (the diameter of a single proton) to about 11.7 fm for ...
A proton by itself is thought to be stable, or at least its lifetime is too long to measure. This is an important discussion in particle physics (see Proton decay). Inside a nucleus, on the other hand, combined protons and neutrons (nucleons) can be stable or unstable depending on the nuclide, or nuclear species. Inside some nuclides, a neutron ...
One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z).
A nucleus with full shells is exceptionally stable, as will be explained. As with electrons in the electron shell model, protons in the outermost shell are relatively loosely bound to the nucleus if there are only few protons in that shell, because they are farthest from the center of the nucleus. Therefore, nuclei which have a full outer ...
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
The prolate spheroid shape of the proton and neutron derived from the analysis of the electromagnetic transition from ground to the excited state. [1] The shape of the atomic nucleus depends on the variety of factors related to the size and shape of its nucleon constituents and the nuclear force holding them together.
Genomic DNA is tightly and orderly packed in the process called DNA condensation, to fit the small available volumes of the cell. In eukaryotes, DNA is located in the cell nucleus, with small amounts in mitochondria and chloroplasts. In prokaryotes, the DNA is held within an irregularly shaped body in the cytoplasm called the nucleoid. [97]