When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful ) has multiplicity above 1 for all prime factors.

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Name First elements Short description OEIS Mersenne prime exponents : 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... Primes p such that 2 p − 1 is prime.: A000043 ...

  4. Multimagic square - Wikipedia

    en.wikipedia.org/wiki/Multimagic_square

    The trimagic series would be related in the same way to the hyper-pyramidal sequence of nested cubes. Cubes 0, 1, 8, 27, 64, 125, 216, ... (sequence A000578 in the OEIS )

  5. Salem–Spencer set - Wikipedia

    en.wikipedia.org/wiki/Salem–Spencer_set

    This sequence is the lexicographically first infinite Salem–Spencer set. [5] Another infinite Salem–Spencer set is given by the cubes 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ...

  6. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    With the exceptions of 1, 8 and 144 (F 1 = F 2, F 6 and F 12) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem). [56] As a result, 8 and 144 (F 6 and F 12) are the only Fibonacci numbers that are the product of other Fibonacci numbers. [57]

  7. On-Line Encyclopedia of Integer Sequences - Wikipedia

    en.wikipedia.org/wiki/On-Line_Encyclopedia_of...

    Second edition of the book. Neil Sloane started collecting integer sequences as a graduate student in 1964 to support his work in combinatorics. [8] [9] The database was at first stored on punched cards.

  8. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  9. 1 − 2 + 4 − 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_4_%E2%88...

    In mathematics, 1 − 2 + 4 − 8 + ⋯ is the infinite series whose terms are the successive powers of two with alternating signs. As a geometric series, it is characterized by its first term, 1, and its common ratio, −2.