When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    It features a collection of classification, regression, concept drift detection and anomaly detection algorithms. It also includes a set of data stream generators and evaluators. scikit-multiflow is designed to interoperate with Python's numerical and scientific libraries NumPy and SciPy and is compatible with Jupyter Notebooks .

  3. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Anomaly detection finds application in many domains including cybersecurity, medicine, machine vision, statistics, neuroscience, law enforcement and financial fraud to name only a few. Anomalies were initially searched for clear rejection or omission from the data to aid statistical analysis, for example to compute the mean or standard deviation.

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Anomaly detection: 2020 (continually updated) [329] [330] Iurii D. Katser and Vyacheslav O. Kozitsin On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study Most data files are adapted from UCI Machine Learning Repository data, some are collected from the literature.

  5. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.

  6. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    When viewed as a graph, a network of computers can be analyzed with GNNs for anomaly detection. Anomalies within provenance graphs often correlate to malicious activity within the network. GNNs have been used to identify these anomalies on individual nodes [ 51 ] and within paths [ 52 ] to detect malicious processes, or on the edge level [ 53 ...

  7. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j is open-source software released under Apache License 2.0, [6] developed mainly by a machine learning group headquartered in San Francisco. [7] It is supported commercially by the startup Skymind, which bundles DL4J, TensorFlow , Keras and other deep learning libraries in an enterprise distribution called the Skymind Intelligence ...

  8. Albumentations - Wikipedia

    en.wikipedia.org/wiki/Albumentations

    Albumentations has gained significant popularity and recognition in the computer vision and deep learning community since its introduction in 2018. The library was designed to provide a flexible and efficient framework for data augmentation in computer vision tasks, and has been widely adopted in academic research, open-source projects, and ...

  9. ML.NET - Wikipedia

    en.wikipedia.org/wiki/ML.NET

    ML.NET is a free software machine learning library for the C# and F# programming languages. [4] [5] [6] It also supports Python models when used together with NimbusML.The preview release of ML.NET included transforms for feature engineering like n-gram creation, and learners to handle binary classification, multi-class classification, and regression tasks. [7]