Search results
Results From The WOW.Com Content Network
The absorption that occurs due to a transition between two states is referred to as an absorption line and a spectrum is typically composed of many lines. The frequencies at which absorption lines occur, as well as their relative intensities, primarily depend on the electronic and molecular structure of the sample.
For a pure RNA sample, the A 230:260:280 should be around 1:2:1, and for a pure DNA sample, the A 230:260:280 should be around 1:1.8:1. [9] Absorption at 330 nm and higher indicates particulates contaminating the solution, causing scattering of light in the visible range. The value in a pure nucleic acid sample should be zero. [citation needed]
Intrinsic DNA fluorescence is the fluorescence emitted directly by DNA when it absorbs ultraviolet (UV) radiation. It contrasts to that stemming from fluorescent labels that are either simply bound to DNA or covalently attached to it, [1] [2] widely used in biological applications; such labels may be chemically modified, not naturally occurring, nucleobases.
An example of a UV-Vis readout. UV-Vis can be used to monitor structural changes in DNA. [8]UV-Vis spectroscopy is routinely used in analytical chemistry for the quantitative determination of diverse analytes or sample, such as transition metal ions, highly conjugated organic compounds, and biological macromolecules.
The nature of the central metal can also influence the absorption spectrum of the metal-macrocycle complex or properties such as excited state lifetime. [ 4 ] [ 5 ] [ 6 ] The tetrapyrrole moiety in organic compounds which is not macrocyclic but still has a conjugated pi-bond system still acts as a chromophore.
Nucleic acid NMR is the use of NMR spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA. As of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy. [2] Nucleic acid NMR uses similar techniques as protein NMR, but has several differences.
These two different types of hemoglobin exhibit different absorption spectra that are normally represented in terms of molar extinction coefficients, as shown in Figure 1. The molar extinction coefficient of Hb has its highest absorption peak at 420 nm and a second peak at 580 nm. Its spectrum then gradually decreases as light wavelength increases.
Most elements are first put into a gaseous phase to allow the spectra to be examined although today other methods can be used on different phases. Each element that is diffracted by a prism-like instrument displays either an absorption spectrum or an emission spectrum depending upon whether the element is being cooled or heated. [7]