Search results
Results From The WOW.Com Content Network
One way to model this behavior is called stochastic rationality. It is assumed that each agent has an unobserved state, which can be considered a random variable. Given that state, the agent behaves rationally. In other words: each agent has, not a single preference-relation, but a distribution over preference-relations (or utility functions).
The term stochastic process first appeared in English in a 1934 paper by Joseph L. Doob. [1] For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term stochastischer Prozeß was used in German by Aleksandr Khinchin, [22] [23] though the German term had been used earlier in 1931 by Andrey Kolmogorov. [24]
The definition of a stochastic process varies, [67] but a stochastic process is traditionally defined as a collection of random variables indexed by some set. [ 68 ] [ 69 ] The terms random process and stochastic process are considered synonyms and are used interchangeably, without the index set being precisely specified.
For example, the emission of radiation from atoms is a natural stochastic process. It can be simulated directly, or its average behavior can be described by stochastic equations that can themselves be solved using Monte Carlo methods.
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.
Here, the intuition is the same as in the construction of the traditional maximum score estimator: the agent is more likely to choose the choice that has the higher observed part of latent utility. Under certain conditions, the smoothed maximum score estimator is consistent, and more importantly, it has an asymptotic normal distribution.
A simple example may help to explain how the Gillespie algorithm works. Consider a system of molecules of two types, A and B . In this system, A and B reversibly bind together to form AB dimers such that two reactions are possible: either A and B react reversibly to form an AB dimer, or an AB dimer dissociates into A and B .
The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes.In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. [1]