When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual block in a deep residual network. Here, the residual connection skips two layers. A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  5. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Format name Design goal Compatible with other formats Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration

  6. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18] TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing platforms including Android and iOS. [citation needed]

  7. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    PPO approximates what TRPO does, with considerably less computation. It uses first-order optimization (the clip function) to constrain the policy update, while TRPO uses KL divergence constraints (second-order optimization). Compared to TRPO, the PPO method is relatively easy to implement and requires less computational resource and time.

  8. Scapegoat tree - Wikipedia

    en.wikipedia.org/wiki/Scapegoat_tree

    This makes scapegoat trees easier to implement and, due to data structure alignment, can reduce node overhead by up to one-third. Instead of the small incremental rebalancing operations used by most balanced tree algorithms, scapegoat trees rarely but expensively choose a "scapegoat" and completely rebuilds the subtree rooted at the scapegoat ...

  9. Generic programming - Wikipedia

    en.wikipedia.org/wiki/Generic_programming

    The C++ Standard Library includes the Standard Template Library or STL that provides a framework of templates for common data structures and algorithms. Templates in C++ may also be used for template metaprogramming, which is a way of pre-evaluating some of the code at compile-time rather than run-time.