When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Model order reduction - Wikipedia

    en.wikipedia.org/wiki/Model_order_reduction

    Model order reduction aims to lower the computational complexity of such problems, for example, in simulations of large-scale dynamical systems and control systems. By a reduction of the model's associated state space dimension or degrees of freedom , an approximation to the original model is computed which is commonly referred to as a reduced ...

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    The function : is often referred to as a kernel or a kernel function. The word "kernel" is used in mathematics to denote a weighting function for a weighted sum or integral . Certain problems in machine learning have more structure than an arbitrary weighting function k {\displaystyle k} .

  4. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    In addition to the supervised learning setting, sample complexity is relevant to semi-supervised learning problems including active learning, [7] where the algorithm can ask for labels to specifically chosen inputs in order to reduce the cost of obtaining many labels.

  5. Kernelization - Wikipedia

    en.wikipedia.org/wiki/Kernelization

    Kernelization is often achieved by applying a set of reduction rules that cut away parts of the instance that are easy to handle. In parameterized complexity theory, it is often possible to prove that a kernel with guaranteed bounds on the size of a kernel (as a function of some parameter associated to the problem) can be found in polynomial time.

  6. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    It is impossible to count the number of steps of an algorithm on all possible inputs. As the complexity generally increases with the size of the input, the complexity is typically expressed as a function of the size n (in bits) of the input, and therefore, the complexity is a function of n. However, the complexity of an algorithm may vary ...

  7. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances. Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting.

  8. Many-one reduction - Wikipedia

    en.wikipedia.org/wiki/Many-one_reduction

    Many-one reductions are valuable because most well-studied complexity classes are closed under some type of many-one reducibility, including P, NP, L, NL, co-NP, PSPACE, EXP, and many others. It is known for example that the first four listed are closed up to the very weak reduction notion of polylogarithmic time projections.

  9. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models , especially in processing long sequences.