When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Using the expression from Coulomb's law, we get the total field at r by using an integral to sum the field at r due to the infinitesimal charge at each other point s in space, to give = () | | where ρ is the charge density. If we take the divergence of both sides of this equation with respect to r, and use the known theorem [9]

  4. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point. As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the ...

  5. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    For example, if in the mass continuity equation for flowing water, u is the water's velocity at each point, and ρ is the water's density at each point, then j would be the mass flux, also known as the material discharge. In a well-known example, the flux of electric charge is the electric current density.

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The equations introduce the electric field, E, a vector field, and the magnetic field, B, a pseudovector field, each generally having a time and location dependence. The sources are the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J.

  7. Solenoidal vector field - Wikipedia

    en.wikipedia.org/wiki/Solenoidal_vector_field

    An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}

  8. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Generically, these equations state that the divergence of the flow of the conserved quantity is equal to the distribution of sources or sinks of that quantity. The divergence theorem states that any such continuity equation can be written in a differential form (in terms of a divergence) and an integral form (in terms of a flux). [12]

  9. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    In the general case a conservation equation can be also a system of this kind of equations (a vector equation) in the form: [9]: 43 + = where y is called the conserved (vector) quantity, ∇y is its gradient, 0 is the zero vector, and A(y) is called the Jacobian of the current density.