Search results
Results From The WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...
Miscellaneous Mathematical Symbols-B is a Unicode block containing miscellaneous mathematical symbols, including brackets, angles, and circle symbols. Block [ edit ]
Argument of a function in mathematical functions; A set of coordinates in a coordinate system; Tuple, a sequence of elements; The greatest common divisor of two numbers; Equivalence class congruence, especially for modular arithmetic or modulo an ideal; A higher order derivative in Lagrange's notation; Binomial or multinomial coefficient
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
The usual argument to compute the sum of the binomial series goes as follows. Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The Leibniz rule bears a strong resemblance to the binomial theorem, and in fact the binomial theorem can be proven directly from the Leibniz rule by taking () = and () =, which gives ( a + b ) n e ( a + b ) x = e ( a + b ) x ∑ k = 0 n ( n k ) a n − k b k , {\displaystyle (a+b)^{n}e^{(a+b)x}=e^{(a+b)x}\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b ...