Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; In other projects ... In algebraic geometry, if : is a morphism of schemes, the fiber of a point in is the fiber product ...
In algebraic geometry, the Stein factorization, introduced by Karl Stein for the case of complex spaces, states that a proper morphism can be factorized as a composition of a finite mapping and a proper morphism with connected fibers. Roughly speaking, Stein factorization contracts the connected components of the fibers of a mapping to points.
In mathematics, a bundle map (or bundle morphism) is a morphism in the category of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber ...
Then there is a morphism Spec(k(y)) → Y with image y, where k(y) is the residue field of y. The fiber of f over y is defined as the fiber product X × Y Spec(k(y)); this is a scheme over the field k(y). [3] This concept helps to justify the rough idea of a morphism of schemes X → Y as a family of schemes parametrized by Y.
In mathematics, a pullback bundle or induced bundle [1] [2] [3] is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f * E over B′. The fiber of f * E over a point b′ in B′ is just the fiber of E over f(b′).
A principal -bundle, where denotes any topological group, is a fiber bundle: together with a continuous right action such that preserves the fibers of (i.e. if then for all ) and acts freely and transitively (meaning each fiber is a G-torsor) on them in such a way that for each and , the map sending to is a homeomorphism.
In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa.
For every object X, there exists a morphism id X : X → X called the identity morphism on X, such that for every morphism f : A → B we have id B ∘ f = f = f ∘ id A. Associativity h ∘ (g ∘ f) = (h ∘ g) ∘ f whenever all the compositions are defined, i.e. when the target of f is the source of g, and the target of g is the source of h.