Ads
related to: quadrature rule with equal spaces and probability formula for division worksheetgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
This exact rule is known as the Gauss–Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The Gauss–Legendre quadrature rule is not typically used for integrable functions with endpoint singularities ...
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
Simpson's rule, which is based on a polynomial of order 2, is also a Newton–Cotes formula. Quadrature rules with equally spaced points have the very convenient property of nesting. The corresponding rule with each interval subdivided includes all the current points, so those integrand values can be re-used.
Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.
In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:
The formula above is obtained by combining the composite Simpson's 1/3 rule with the one consisting of using Simpson's 3/8 rule in the extreme subintervals and Simpson's 1/3 rule in the remaining subintervals.