Search results
Results From The WOW.Com Content Network
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material
Schematic of quantities for capstan equation An example of holding capstans and a powered capstan used to raise sails on a tall ship. The capstan equation [ 1 ] or belt friction equation , also known as Euler–Eytelwein formula [ 2 ] (after Leonhard Euler and Johann Albert Eytelwein ), [ 3 ] relates the hold-force to the load-force if a ...
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
Adhesion traction is the friction between the drive wheels and the steel rail. [1] Since the vast majority of railways are adhesion railways, the term adhesion railway is used only when it is necessary to distinguish adhesion railways from railways moved by other means, such as by a stationary engine pulling on a cable attached to the cars or ...
Skin friction arises from the friction of the fluid against the "skin" of the object that is moving through it and forms a vector at each point on the surface. A skin friction line is a curve on the surface tangent to skin friction vectors. A limit streamline is a streamline where the distance normal to the surface tends to zero. Limit ...
Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.
It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact. With respect to road-tire interaction, an important contribution concerns the so-called magic tire formula by Hans Pacejka. [7] In the 1970s, many numerical models were devised.