Search results
Results From The WOW.Com Content Network
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The basic definition of "energy" is a measure of a body's (in thermodynamics, the system's) ability to cause change. For example, when a person pushes a heavy box a few metres forward, that person exerts mechanical energy, also known as work, on the box over a distance of a few meters forward.
The maximum work is thus regarded as the diminution of the free, or available, energy of the system (Gibbs free energy G at T = constant, P = constant or Helmholtz free energy F at T = constant, V = constant), whilst the heat given out is usually a measure of the diminution of the total energy of the system (internal energy).
Properties of isolated, closed, and open thermodynamic systems in exchanging energy and matter. A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes.
i is the total number of atoms of element i, which is a constant, since the system is closed. If there are a total of k types of atoms in the system, then there will be k such equations. If ions are involved, an additional row is added to the a ij matrix specifying the respective charge on each molecule which will sum to zero.
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
In thermodynamics, the Gibbs free energy or Helmholtz free energy is essentially the energy of a chemical reaction "free" or available to do external work. Historically, the "free energy" is a more advanced and accurate replacement for the thermochemistry term “affinity” used by chemists of olden days to describe the “force” that caused chemical reactions.
The work function depends on the configurations of atoms at the surface of the material. For example, on polycrystalline silver the work function is 4.26 eV, but on silver crystals it varies for different crystal faces as (100) face: 4.64 eV, (110) face: 4.52 eV, (111) face: 4.74 eV. [13] Ranges for typical surfaces are shown in the table below ...