When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]

  3. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Congruence, two binary relations, one linking line segments and one linking angles, each denoted by an infix ≅. Line segments, angles, and triangles may each be defined in terms of points and straight lines, using the relations of betweenness and containment.

  4. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    A transformation A ↦ P −1 AP is called a similarity transformation or conjugation of the matrix A. In the general linear group , similarity is therefore the same as conjugacy , and similar matrices are also called conjugate ; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than ...

  5. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles). [9] The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles. [10]

  6. Matrix congruence - Wikipedia

    en.wikipedia.org/wiki/Matrix_congruence

    Matrix congruence is an equivalence relation. Matrix congruence arises when considering the effect of change of basis on the Gram matrix attached to a bilinear form or quadratic form on a finite-dimensional vector space: two matrices are congruent if and only if they represent the same bilinear form with respect to different bases.

  7. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    The role of symmetry in grouping and figure/ground organization has been confirmed in many studies. For instance, detection of reflectional symmetry is faster when this is a property of a single object. [29] Studies of human perception and psychophysics have shown that detection of symmetry is fast, efficient and robust to perturbations.

  8. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation , reflection , dilation , or translation ), the center of the transformed triangle is the same point as the transformed center ...

  9. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.