Search results
Results From The WOW.Com Content Network
Given a vector space V over a field K, the span of a set S of vectors (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. It is thus the smallest (for set inclusion) subspace containing W. It is referred to as the subspace spanned by S, or by the vectors in S.
In general, a subspace of K n determined by k parameters (or spanned by k vectors) has dimension k. However, there are exceptions to this rule. However, there are exceptions to this rule. For example, the subspace of K 3 spanned by the three vectors (1, 0, 0), (0, 0, 1), and (2, 0, 3) is just the xz -plane, with each point on the plane ...
The above algorithm can be used in general to find the dependence relations between any set of vectors, and to pick out a basis from any spanning set. Also finding a basis for the column space of A is equivalent to finding a basis for the row space of the transpose matrix A T .
The set of T-invariant subspaces of V is sometimes called the invariant-subspace lattice of T and written Lat(T). As the name suggests, it is a lattice, with meets and joins given by (respectively) set intersection and linear span. A minimal element in Lat(T) in said to be a minimal invariant subspace.
The closure property also implies that every intersection of linear subspaces is a linear subspace. [11] Linear span Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G.
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...
The vector space spanned by the basis vectors identified by the analysis is then the signal subspace. The underlying assumption is that information in speech signals is almost completely contained in a small linear subspace of the overall space of possible sample vectors, whereas additive noise is typically distributed through the larger space ...
In mathematics, the affine hull or affine span of a set S in Euclidean space R n is the smallest affine set containing S, [1] or equivalently, the intersection of all affine sets containing S. Here, an affine set may be defined as the translation of a vector subspace. The affine hull aff(S) of S is the set of all affine combinations of elements ...