When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Fermat's Last Theorem considers solutions to the Fermat equation: a n + b n = c n with positive integers a, b, and c and an integer n greater than 2. There are several generalizations of the Fermat equation to more general equations that allow the exponent n to be a negative integer or rational, or to consider three different exponents.

  3. Problem of points - Wikipedia

    en.wikipedia.org/wiki/Problem_of_points

    The problem arose again around 1654 when Chevalier de Méré posed it to Blaise Pascal. Pascal discussed the problem in his ongoing correspondence with Pierre de Fermat. Through this discussion, Pascal and Fermat not only provided a convincing, self-consistent solution to this problem, but also developed concepts that are still fundamental to ...

  4. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  5. Fermat's theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem

    The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    The key difference between Fermat's and Descartes' treatments is a matter of viewpoint: Fermat always started with an algebraic equation and then described the geometric curve that satisfied it, whereas Descartes started with geometric curves and produced their equations as one of several properties of the curves. [12]

  7. Adequality - Wikipedia

    en.wikipedia.org/wiki/Adequality

    Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.

  8. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    Pierre de Fermat. Pierre de Fermat first stated the theorem in a letter dated October 18, 1640, to his friend and confidant Frénicle de Bessy. His formulation is equivalent to the following: [3] If p is a prime and a is any integer not divisible by p, then a p − 1 − 1 is divisible by p. Fermat's original statement was

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n ≥ 1, = + = for n ≥ 2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.