Search results
Results From The WOW.Com Content Network
[nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]
It takes 250 days (0.68 years) in the transit to Mars, and in the case of a free-return style abort without the use of propulsion at Mars, 1.5 years to get back to Earth, at a total delta-v requirement of 3.34 km/s. Zubrin advocates a slightly faster transfer, that takes only 180 days to Mars, but 2 years back to Earth in case of an abort.
The column labeled "v exiting LEO" gives the velocity needed (in a non-rotating frame of reference centred on Earth) when 300 km above Earth's surface. This is obtained by adding to the specific kinetic energy the square of the speed (7.73 km/s) of this low Earth orbit (that is, the depth of Earth's gravity well at this LEO).
In November, the sun's gravity will pull it back into an orbit around the sun — but not that far from Earth. On January 8, 2025, according to NASA, it will skim past Earth at a distance of about ...
This plot shows a ship capable of 1-g (10 m/s 2 or about 1.0 ly/y 2) "felt" or proper acceleration [6] can travel vast distances, although is limited by the mass of any propellant it carries. A spaceship using significant constant acceleration will approach the speed of light over interstellar distances, so special relativity effects including ...
To do this around the Earth, it must be on a free trajectory which has an altitude at perigee (altitude at closest approach) around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s.
The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11.2 km/s (25,100 mph). [94] Orbiting spacecraft with a perigee below about 2,000 km (1,200 mi) are subject to drag from the Earth's atmosphere, [95] which decreases the orbital altitude. The rate of orbital decay ...
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.