Search results
Results From The WOW.Com Content Network
Decision boundaries are not always clear cut. That is, the transition from one class in the feature space to another is not discontinuous, but gradual. This effect is common in fuzzy logic based classification algorithms, where membership in one class or another is ambiguous. Decision boundaries can be approximations of optimal stopping boundaries.
Homology theory can be said to start with the Euler polyhedron formula, or Euler characteristic. [16] This was followed by Riemann's definition of genus and n-fold connectedness numerical invariants in 1857 and Betti's proof in 1871 of the independence of "homology numbers" from the choice of basis. [17]
The Jenks optimization method, also called the Jenks natural breaks classification method, is a data clustering method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the ...
Otsu's method is related to Fisher's linear discriminant, and was created to binarize the histogram of pixels in a grayscale image by optimally picking the black/white threshold that minimizes intra-class variance and maximizes inter-class variance within/between grayscales assigned to black and white pixel classes.
Suppose a pair (,) takes values in {,, …,}, where is the class label of an element whose features are given by .Assume that the conditional distribution of X, given that the label Y takes the value r is given by (=) =,, …, where "" means "is distributed as", and where denotes a probability distribution.
In machine learning, a linear classifier makes a classification decision for each object based on a linear combination of its features.Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use.
In machine learning (ML), a margin classifier is a type of classification model which is able to give an associated distance from the decision boundary for each data sample. For instance, if a linear classifier is used, the distance (typically Euclidean , though others may be used) of a sample from the separating hyperplane is the margin of ...
In mathematics, the Dirichlet boundary condition is imposed on an ordinary or partial differential equation, such that the values that the solution takes along the boundary of the domain are fixed. The question of finding solutions to such equations is known as the Dirichlet problem .