When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.

  3. Vertex configuration - Wikipedia

    en.wikipedia.org/wiki/Vertex_configuration

    A vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. This vertex figure has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for vertex-uniform polyhedra all the neighboring vertices are in the same plane and so this plane projection can be used to visually represent the vertex configuration.

  4. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    A standard simplex is an example of a 0/1-polytope, with all coordinates as 0 or 1. It can also be seen one facet of a regular ( n + 1) - orthoplex . There is a canonical map from the standard n -simplex to an arbitrary n -simplex with vertices ( v 0 , ..., v n ) given by

  5. Polyhedral graph - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_graph

    A polyhedral graph is the graph of a simple polyhedron if it is cubic (every vertex has three edges), and it is the graph of a simplicial polyhedron if it is a maximal planar graph. For example, the tetrahedral, cubical, and dodecahedral graphs are simple; the tetrahedral, octahedral, and icosahedral graphs are simplicial.

  6. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  7. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.

  8. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron. Many polyhedra are constructed from the regular icosahedron.

  9. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    The surface area and the volume of the truncated icosahedron of edge length are: [2] = (+ +) = +. The sphericity of a polyhedron describes how closely a polyhedron resembles a sphere. It can be defined as the ratio of the surface area of a sphere with the same volume to the polyhedron's surface area, from which the value is between 0 and 1.