Ad
related to: atp synthase diagram labeled with structures and molecules
Search results
Results From The WOW.Com Content Network
The structure of the intact ATP synthase is currently known at low-resolution from electron cryo-microscopy (cryo-EM) studies of the complex. The cryo-EM model of ATP synthase suggests that the peripheral stalk is a flexible structure that wraps around the complex as it joins F 1 to F O.
The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix ...
ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases ...
F-ATPase, also known as F-Type ATPase, is an ATPase/synthase found in bacterial plasma membranes, in mitochondrial inner membranes (in oxidative phosphorylation, where it is known as Complex V), and in chloroplast thylakoid membranes.
This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c ...
ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane).
F-ATP synthases are identical in appearance and function except for the mitochondrial F 0 F 1-ATP synthase, which contains 7-9 additional subunits. [12] The electrochemical potential is what causes the c-ring to rotate in a clockwise direction for ATP synthesis. This causes the central stalk and the catalytic domain to change shape.
Mechanism of ATP synthase. ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black. This ATP synthesis reaction is called the binding change mechanism and involves the active site of a β subunit cycling between three states. [77] In the "open" state, ADP and phosphate enter the active site (shown in brown in the ...