When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph. The single-destination shortest path problem, in which we have to find shortest paths from all vertices in the directed graph to a single destination vertex v. This can be reduced to the single-source ...

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  4. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    The maximum shortest path weight for the source node is defined as ():= {⁡ (,): ⁡ (,) <}, abbreviated . [1] Also, the size of a path is defined to be the number of edges on the path. We distinguish light edges from heavy edges, where light edges have weight at most Δ {\displaystyle \Delta } and heavy edges have weight bigger than Δ ...

  5. Parallel all-pairs shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_all-pairs...

    The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node. In pseudocode such an implementation could look as follows:

  6. Brandes' algorithm - Wikipedia

    en.wikipedia.org/wiki/Brandes'_algorithm

    The number of shortest paths between and every vertex is calculated using breadth-first search. The breadth-first search starts at s {\displaystyle s} , and the shortest distance d ( v ) {\displaystyle d(v)} of each vertex from s {\displaystyle s} is recorded, dividing the graph into discrete layers.

  7. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    Finding the shortest path in a graph using optimal substructure; a straight line indicates a single edge; a wavy line indicates a shortest path between the two vertices it connects (among other paths, not shown, sharing the same two vertices); the bold line is the overall shortest path from start to goal.

  8. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    This benchmark generates an edge tuple with two endpoints at first. Then the kernel 1 will constructs an undirected graph, in which weight of edge will not be assigned if only kernel 2 runs afterwards. Users can choose to run BFS in kernel 2 and/or Single-Source-Shortest-Path in kernel 3 on the constructed graph.

  9. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...