When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.

  3. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    A polygon and its two normal vectors A normal to a surface at a point is the same as a normal to the tangent plane to the surface at the same point.. In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object.

  4. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    On the example of a torus knot, the tangent vector T, the normal vector N, and the binormal vector B, along with the curvature κ(s), and the torsion τ(s) are displayed. At the peaks of the torsion function the rotation of the Frenet–Serret frame (T,N,B) around the tangent vector is clearly visible.

  5. Tangent vector - Wikipedia

    en.wikipedia.org/wiki/Tangent_vector

    In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...

  6. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    At umbilic points, both principal curvatures are equal and every tangent vector can be considered a principal direction. These typically occur in isolated points. At hyperbolic points, the principal curvatures have opposite signs, and the surface will be locally saddle shaped. At parabolic points, one of the principal curvatures is zero ...

  7. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The tangent vector's magnitude ‖ ′ ‖ is the speed at the time t 0. The first Frenet vector e 1 (t) is the unit tangent vector in the same direction, defined at each regular point of γ: = ′ ‖ ′ ‖.

  8. Normal plane (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_plane_(geometry)

    Saddle surface with normal planes in directions of principal curvatures. In geometry, a normal plane is any plane containing the normal vector of a surface at a particular point. The normal plane also refers to the plane that is perpendicular to the tangent vector of a space curve; (this plane also contains the normal vector) see Frenet ...

  9. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Animation of the torsion and the corresponding rotation of the binormal vector. Let r be a space curve parametrized by arc length s and with the unit tangent vector T.If the curvature κ of r at a certain point is not zero then the principal normal vector and the binormal vector at that point are the unit vectors