Search results
Results From The WOW.Com Content Network
Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation . [ 1 ] As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century.
Nitrogen's effects on agriculture profoundly influence crop growth, soil fertility, and overall agricultural productivity, while also exerting significant impacts on the environment. Nitrogen is an element vital to many environmental processes. Nitrogen plays a vital role in the nitrogen cycle, a complex biogeochemical process that involves the ...
The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biological and physical processes.
One of the major cycles that humans can contribute to that cause a major impact on climate change is the nitrogen cycle. This comes from nitrogen fertilizers that humans use. Gruber and Galloway have researched, "The massive acceleration of the nitrogen cycle caused by the production and industrial use of artificial nitrogen fertilizers ...
Lichens are symbiotic organisms that play an important role in the biogeochemical cycle on Earth. The characteristics of lichens, such as strong resistance to factors such as desiccation, ability to grow and break down rocks allow lichen to grow in different types of environment including highly nitrogen limited area such as subarctic heath.
Adapt-N is a precision nitrogen management solution [buzzword] operated by Agronomic Technology Corp. It was developed at Cornell University.It examines soil, weather, crop, field management data to provide an always-on, field-specific nitrogen recommendation that has been shown to improve financial and environmental performance.
Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]
The diagram on the right shows some human impacts on the marine nitrogen cycle. Bioavailable nitrogen (Nb) is introduced into marine ecosystems by runoff or atmospheric deposition, causing eutrophication , the formation of dead zones and the expansion of the oxygen minimum zones (OMZs).