When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Method of matched asymptotic expansions - Wikipedia

    en.wikipedia.org/wiki/Method_of_matched...

    A method of matched asymptotic expansions - with matching of solutions in the common domain of validity - has been developed and used extensively by Dingle and Müller-Kirsten for the derivation of asymptotic expansions of the solutions and characteristic numbers (band boundaries) of Schrödinger-like second-order differential equations with ...

  3. Liénard equation - Wikipedia

    en.wikipedia.org/wiki/Liénard_equation

    In mathematics, more specifically in the study of dynamical systems and differential equations, a Liénard equation [1] is a type of second-order ordinary differential equation named after the French physicist Alfred-Marie Liénard.

  4. Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Riccati_equation

    The correspondence between Riccati equations and second-order linear ODEs has other consequences. For example, if one solution of a 2nd order ODE is known, then it is known that another solution can be obtained by quadrature, i.e., a simple integration. The same holds true for the Riccati equation.

  5. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations.

  6. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.

  7. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    Differential equations that describe natural phenomena almost always have only first and second order derivatives in them, but there are some exceptions, such as the thin-film equation, which is a fourth order partial differential equation.

  8. Poincaré–Lindstedt method - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Lindstedt_method

    The coefficients of the super-harmonic terms are solved directly, and the coefficients of the harmonic term are determined by expanding down to order-(n+1), and eliminating its secular term. See chapter 10 of [5] for a derivation up to order 3, and [8] for a computer derivation up to order 164.

  9. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]