Search results
Results From The WOW.Com Content Network
An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...
By repeated subtractions Napier calculated (1 − 10 −7) L for L ranging from 1 to 100. The result for L=100 is approximately 0.99999 = 1 − 10 −5. Napier then calculated the products of these numbers with 10 7 (1 − 10 −5) L for L from 1 to 50, and did similarly with 0.9998 ≈ (1 − 10 −5) 20 and 0.9 ≈ 0.995 20. [32]
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]
For example, one can multiply a sine that is less than 0.5 by some power of two or ten to bring it into the range [0.5,1]. After finding that logarithm in the radical table, one adds the logarithm of the power of two or ten that was used (he gives a short table), to get the required logarithm. [1]: p. 36
The top left graph is linear in the X- and Y-axes, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis.
The 19 degree pages from Napier's 1614 table of logarithms of trigonometric functions Mirifici Logarithmorum Canonis Descriptio. The term Napierian logarithm or Naperian logarithm, named after John Napier, is often used to mean the natural logarithm. Napier did not introduce this natural logarithmic function, although it is named after him.
From Wikipedia, the free encyclopedia. Redirect page