When.com Web Search

  1. Ad

    related to: how to explain pythagoras theorem

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Bride's Chair - Wikipedia

    en.wikipedia.org/wiki/Bride's_Chair

    Bride's Chair: Illustration of Pythagorean theorem Bride's Chair: The figure used by Euclid to explain the proof of Pythagorean theorem. In geometry, a Bride's Chair is an illustration of the Pythagorean theorem. [1] The figure appears in Proposition 47 of Book I of Euclid's Elements. [2]

  4. Garfield's proof of the Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Garfield's_proof_of_the...

    Diagram to explain Garfield's proof of the Pythagorean theorem In the figure, A B C {\displaystyle ABC} is a right-angled triangle with right angle at C {\displaystyle C} . The side-lengths of the triangle are a , b , c {\displaystyle a,b,c} .

  5. Students discover and publish unexpected proof for 2,000-year ...

    www.aol.com/students-discover-publish-unexpected...

    Experts described Jackson and Johnson’s approach as particularly challenging because trigonometry as a field is essentially based on Pythagorastheorem; thus using trigonometry to prove the ...

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...

  7. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The celebrated Pythagorean theorem (book I, proposition 47) states that in any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

  8. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    The use of the Pythagorean theorem and the tangent secant theorem can be replaced by a single application of the power of a point theorem. Case of acute angle γ, where a < 2b cos γ. Drop the perpendicular from A onto a = BC, creating a line segment of length b cos γ. Duplicate the right triangle to form the isosceles triangle ACP.

  9. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in trigonometry. In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0.