When.com Web Search

  1. Ad

    related to: what is e equal to in log formula calculator

Search results

  1. Results From The WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x , log e x , or sometimes, if the base e is implicit, simply log x .

  4. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The same formula applies to octonions, with a zero real part and a norm equal to 1. These formulas are a direct generalization of Euler's identity, since i {\displaystyle i} and − i {\displaystyle -i} are the only complex numbers with a zero real part and a norm (absolute value) equal to 1 .

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    To state the change of base logarithm formula formally: , +,,, +, ⁡ = ⁡ ⁡ () This identity is useful to evaluate logarithms on calculators. For instance, most calculators have buttons for ln and for log 10 , but not all calculators have buttons for the logarithm of an arbitrary base.

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Now, taking this derived formula, we can use Euler's formula to define the logarithm of a complex number. To do this, we also use the definition of the logarithm (as the inverse operator of exponentiation): a = e ln ⁡ a , {\displaystyle a=e^{\ln a},} and that e a e b = e a + b , {\displaystyle e^{a}e^{b}=e^{a+b},} both valid for any complex ...

  7. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable ⁠ ⁠ is denoted ⁠ ⁡ ⁠ or ⁠ ⁠, with the two notations used interchangeab

  8. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

  9. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The logarithm keys (LOG for base 10 and LN for base e) on a TI-83 Plus graphing calculator Logarithms are easy to compute in some cases, such as log 10 (1000) = 3 . In general, logarithms can be calculated using power series or the arithmetic–geometric mean , or be retrieved from a precalculated logarithm table that provides a fixed precision.