Search results
Results From The WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the ...
Many remarkable phenomena can be explained using quantum mechanics, like superfluidity. For example, if liquid helium cooled to a temperature near absolute zero is placed in a container, it spontaneously flows up and over the rim of its container; this is an effect which cannot be explained by classical physics.
According to Bohr's complementarity principle, light is neither a wave nor a stream of particles. A particular experiment can demonstrate particle behavior (passing through a definite slit) or wave behavior (interference), but not both at the same time. [72] The same experiment has been performed for light, electrons, atoms, and molecules.
The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum mechanical picture than Bohr's. In the 1950s Joseph Keller updated Bohr–Sommerfeld quantization using Einstein's interpretation of 1917, [6] now known as Einstein–Brillouin–Keller method.
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research.
An important step was taken in the evolution of quantum theory at the first Solvay Congress of 1911. There the top physicists of the scientific community met to discuss the problem of “Radiation and the Quanta.”
[17] [18] [19] The EPR–Bohm thought experiment can be explained using electron–positron pairs. Suppose we have a source that emits electron–positron pairs, with the electron sent to destination A , where there is an observer named Alice , and the positron sent to destination B , where there is an observer named Bob .