When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    II:106 Although Bohr's model would also rely on just the electron to explain the spectrum, he did not assume an electrodynamical model for the atom. The other important advance in the understanding of atomic spectra was the Rydberg–Ritz combination principle which related atomic spectral line frequencies to differences between 'terms ...

  3. Introduction to quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_quantum...

    Solving this mystery would eventually become the first major step toward quantum mechanics. Throughout the 19th century evidence grew for the atomic nature of matter. With Thomson's discovery of the electron in 1897, scientist began the search for a model of the interior of the atom.

  4. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    These can be chosen appropriately in order to obtain a quantitative description of a quantum system, a necessary step in making physical predictions. An important guide for making these choices is the correspondence principle , a heuristic which states that the predictions of quantum mechanics reduce to those of classical mechanics in the ...

  5. Complementarity (physics) - Wikipedia

    en.wikipedia.org/wiki/Complementarity_(physics)

    Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the ...

  6. Copenhagen interpretation - Wikipedia

    en.wikipedia.org/wiki/Copenhagen_interpretation

    According to Bohr's complementarity principle, light is neither a wave nor a stream of particles. A particular experiment can demonstrate particle behavior (passing through a definite slit) or wave behavior (interference), but not both at the same time. [72] The same experiment has been performed for light, electrons, atoms, and molecules.

  7. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    Calculations based on the Bohr–Sommerfeld model were able to accurately explain a number of more complex atomic spectral effects. For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr ...

  8. Interpretations of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Interpretations_of_quantum...

    The definition of quantum theorists' terms, such as wave function and matrix mechanics, progressed through many stages.For instance, Erwin Schrödinger originally viewed the electron's wave function as its charge density smeared across space, but Max Born reinterpreted the absolute square value of the wave function as the electron's probability density distributed across space; [3]: 24–33 ...

  9. Einstein–Podolsky–Rosen paradox - Wikipedia

    en.wikipedia.org/wiki/Einstein–Podolsky–Rosen...

    [17] [18] [19] The EPR–Bohm thought experiment can be explained using electron–positron pairs. Suppose we have a source that emits electron–positron pairs, with the electron sent to destination A , where there is an observer named Alice , and the positron sent to destination B , where there is an observer named Bob .