When.com Web Search

  1. Ad

    related to: adjacent edges in graph theory examples

Search results

  1. Results From The WOW.Com Content Network
  2. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge.The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v.

  3. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.

  4. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  5. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  6. Induced subgraph - Wikipedia

    en.wikipedia.org/wiki/Induced_subgraph

    Then the induced subgraph [] is the graph whose vertex set is and whose edge set consists of all of the edges in that have both endpoints in . [1] That is, for any two vertices u , v ∈ S {\displaystyle u,v\in S} , u {\displaystyle u} and v {\displaystyle v} are adjacent in G [ S ] {\displaystyle G[S]} if and only if they are adjacent in G ...

  7. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A drawing of a graph with 6 vertices and 7 edges.. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.

  8. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  9. Edge dominating set - Wikipedia

    en.wikipedia.org/wiki/Edge_dominating_set

    Examples of edge dominating sets. In graph theory, an edge dominating set for a graph G = (V, E) is a subset D ⊆ E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines).