When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    The degree of a vertex, denoted 𝛿(v) in a graph is the number of edges incident to it. An isolated vertex is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge (the example image illustrates one isolated vertex). [1] A leaf vertex (also pendant vertex) is a vertex with degree one.

  3. Incidence (graph) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(graph)

    In graph theory, a vertex is incident with an edge if the vertex is one of the two vertices the edge connects. An incidence is a pair ( u , e ) {\displaystyle (u,e)} where u {\displaystyle u} is a vertex and e {\displaystyle e} is an edge incident with u {\displaystyle u}

  4. Edge contraction - Wikipedia

    en.wikipedia.org/wiki/Edge_contraction

    Vertex identification (sometimes called vertex contraction) removes the restriction that the contraction must occur over vertices sharing an incident edge. (Thus, edge contraction is a special case of vertex identification.) The operation may occur on any pair (or subset) of vertices in the graph.

  5. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...

  7. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n , the maximum degree of each vertex is n − 1 and the maximum size of the graph is ⁠ n ( n − 1) / 2 ⁠ .

  8. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    An incidence in a graph is a vertex-edge pair such that the vertex is an endpoint of the edge. incidence matrix The incidence matrix of a graph is a matrix whose rows are indexed by vertices of the graph, and whose columns are indexed by edges, with a one in the cell for row i and column j when vertex i and edge j are incident, and a zero ...

  9. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    The edge-connectivity for a graph with at least 2 vertices is less than or equal to the minimum degree of the graph because removing all the edges that are incident to a vertex of minimum degree will disconnect that vertex from the rest of the graph. [1] For a vertex-transitive graph of degree d, we have: 2(d + 1)/3 ≤ κ(G) ≤ λ(G) = d. [11]