When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    G = τ / γ = E / [2 (1 + ν)] Shear strain. In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: [1] where. = shear stress. is the force which acts. is the area on which the force ...

  3. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.

  4. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    Shear modulus: Ratio of shear stress to shear strain (MPa) Shear strength: Maximum shear stress a material can withstand; Slip: A tendency of a material's particles to undergo plastic deformation due to a dislocation motion within the material. Common in Crystals. Specific modulus: Modulus per unit volume (MPa/m^3)

  5. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  6. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The shear modulus or modulus of rigidity (G or Lamé second parameter) describes an object's tendency to shear (the deformation of shape at constant volume) when acted upon by opposing forces; it is defined as shear stress over shear strain. The shear modulus is part of the derivation of viscosity.

  7. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...

  8. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    t. e. In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied.

  9. Superhard material - Wikipedia

    en.wikipedia.org/wiki/Superhard_material

    The shear modulus G is defined as ratio of shear stress to shear strain: G = stress/strain = F·L/(A·dx), where F is the applied force, A is the area upon which the force acts, dx is the resulting displacement and L is the initial length. The larger the shear modulus, the greater the ability for a material to resist shearing forces.