Search results
Results From The WOW.Com Content Network
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, [1] it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initially characterized in E. coli and is ubiquitous in prokaryotes.
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex.
A polymerase chain reaction is a form of enzymatic DNA synthesis in the laboratory, using cycles of repeated heating and cooling of the reaction for DNA melting and enzymatic replication of the DNA. DNA synthesis during PCR is very similar to living cells but has very specific reagents and conditions.
The double-stranded structure of DNA provides a simple mechanism for DNA replication. Here, the two strands are separated and then each strand's complementary DNA sequence is recreated by an enzyme called DNA polymerase. This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto ...
However, these mutagenic effects are inhibited when the phage's DNA synthesis is catalyzed by the tsCB120 antimutator polymerase, or another antimutator polymerase, tsCB87. [9] These findings indicate that the level of induction of mutations by DNA damage can be strongly influenced by the gene 43 DNA polymerase proofreading function.
A master mix is a mixture containing precursors and enzymes used as an ingredient in polymerase chain reaction techniques in molecular biology. Such mixtures contain a mixture dNTPs (required as a substrate for the building of new DNA strands), MgCl 2, Taq polymerase (an enzyme required to building new DNA strands), a pH buffer and come mixed in nuclease-free water.
RNA polymerase transcribes RNA from a DNA template. [5] DNA polymerase turns single-stranded DNA into double-stranded DNA. [6] Helicases separate double strands of nucleic acids prior to transcription or replication. ATP is used. Topoisomerases reduce supercoiling of DNA in the cell. ATP is used. RSC and SWI/SNF complexes remodel chromatin in ...
The DNA attaches to the flow cell via complementary sequences. The strand bends over and attaches to a second oligo forming a bridge. A polymerase synthesizes the reverse strand. The two strands release and straighten. Each forms a new bridge (bridge amplification). The result is a cluster of DNA forward and reverse strand clones.