Search results
Results From The WOW.Com Content Network
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, [1] it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initially characterized in E. coli and is ubiquitous in prokaryotes.
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex.
The double-stranded structure of DNA provides a simple mechanism for DNA replication. Here, the two strands are separated and then each strand's complementary DNA sequence is recreated by an enzyme called DNA polymerase. This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto ...
A polymerase chain reaction is a form of enzymatic DNA synthesis in the laboratory, using cycles of repeated heating and cooling of the reaction for DNA melting and enzymatic replication of the DNA. DNA synthesis during PCR is very similar to living cells but has very specific reagents and conditions.
18968 Ensembl ENSG00000101868 ENSMUSG00000006678 UniProt P09884 P33609 RefSeq (mRNA) NM_016937 NM_001330360 NM_001378303 NM_008892 RefSeq (protein) NP_001317289 NP_058633 NP_001365232 NP_032918 Location (UCSC) Chr X: 24.69 – 25 Mb Chr X: 92.35 – 92.68 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse DNA polymerase alpha catalytic subunit is an enzyme that in humans is encoded by ...
DNA polymerase alpha also known as Pol α is an enzyme complex found in eukaryotes that is involved in initiation of DNA replication. The DNA polymerase alpha complex consists of 4 subunits: POLA1 , POLA2 , PRIM1 , and PRIM2 .
Structure of Taq DNA polymerase. In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication.
The DNA attaches to the flow cell via complementary sequences. The strand bends over and attaches to a second oligo forming a bridge. A polymerase synthesizes the reverse strand. The two strands release and straighten. Each forms a new bridge (bridge amplification). The result is a cluster of DNA forward and reverse strand clones.