Search results
Results From The WOW.Com Content Network
In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in series summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a linear sequence transformation that preserves the limits of convergent sequences . [ 1 ]
The Silverman–Toeplitz theorem characterizes matrix summation methods, which are methods for summing a divergent series by applying an infinite matrix to the vector of coefficients. The most general methods for summing a divergent series are non-constructive and concern Banach limits .
Toeplitz algebra, the C*-algebra generated by the unilateral shift on the Hilbert space; Toeplitz Hash Algorithm, used in many network interface controllers; Hellinger–Toeplitz theorem, an everywhere defined symmetric operator on a Hilbert space is bounded; Silverman–Toeplitz theorem, characterizing matrix summability methods which are regular
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Otto Toeplitz. Here is how Gottfried Köthe, who was Toeplitz's assistant in Bonn, described their collaboration: Otto liked to take walks and talk about scientific questions. I in fact needed a piece of paper and pencil to write everything down. Toeplitz convinced me that the great outline of research comes to light best in dialog.
Toeplitz matrices are persymmetric. Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric. Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent ...
Fejér's theorem; Hölder summation; Lambert summation; Perron's formula; Ramanujan summation; Riesz mean; Silverman–Toeplitz theorem; Stolz–Cesàro theorem; Cauchy's limit theorem; Summation by parts
Theorem (Coburn) C*(V) is isomorphic to the Toeplitz algebra and V is the isomorphic image of T z. The proof hinges on the connections with C(T), in the description of the Toeplitz algebra and that the spectrum of a unitary operator is contained in the circle T. The following properties of the Toeplitz algebra will be needed: