Search results
Results From The WOW.Com Content Network
In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section ( ellipse , parabola , or hyperbola ) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of ...
Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν 2 = 2/3.
Equidistant conic = simple conic: Conic Equidistant Based on Ptolemy's 1st Projection Distances along meridians are conserved, as is distance along one or two standard parallels. [3] 1772 Lambert conformal conic: Conic Conformal Johann Heinrich Lambert: Used in aviation charts. 1805 Albers conic: Conic Equal-area Heinrich C. Albers
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola , the parabola , and the ellipse ; the circle is a special case of the ellipse, though it was sometimes considered a fourth type.
In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.
The analog of a conic section on the sphere is a spherical conic, a quartic curve which can be defined in several equivalent ways. The intersection of a sphere with a quadratic cone whose vertex is the sphere center; The intersection of a sphere with an elliptic or hyperbolic cylinder whose axis passes through the sphere center
This page was last edited on 14 November 2020, at 20:25 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Spherical conic This page was last edited on 24 March 2022, at 07:05 (UTC). Text is available under the Creative Commons Attribution-ShareAlike 4.0 License ...