When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    This case always occurs as a degenerate conic in a pencil of circles. However, in other contexts it is not considered as a degenerate conic, as its equation is not of degree 2. The case of coincident lines occurs if and only if the rank of the 3×3 matrix is 1; in all other degenerate cases its rank is 2. [3]: p.108

  3. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    A degenerate case thus has special features which makes it non-generic, or a special case. However, not all non-generic or special cases are degenerate. For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. In fact, degenerate cases often correspond to singularities, either in the object ...

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Pascal's theorem concerns the collinearity of three points that are constructed from a set of six points on any non-degenerate conic. The theorem also holds for degenerate conics consisting of two lines, but in that case it is known as Pappus's theorem. Non-degenerate conic sections are always "smooth".

  5. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    Degenerate conics follow by continuity (the theorem is true for non-degenerate conics, and thus holds in the limit of degenerate conic). A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it ...

  6. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 2 5 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative ...

  7. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    Note that of these conics, exactly three are degenerate, each consisting of a pair of lines, corresponding to the (,) / = ways of choosing 2 pairs of points from 4 points (counting via the multinomial coefficient, and accounting for the overcount by a factor of 2 that () makes when interested in counting pairs of pairs rather than just ...

  8. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration, which implies that they satisfy a linear relation that need not always hold. A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).

  9. Pencil (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pencil_(geometry)

    A (non-degenerate) conic is completely determined by five points in general position (no three collinear) in a plane and the system of conics which pass through a fixed set of four points (again in a plane and no three collinear) is called a pencil of conics. [19] The four common points are called the base points of the pencil. Through any ...