Search results
Results From The WOW.Com Content Network
This is referred as overexpanded flow because in this case the pressure at the nozzle exit is lower than that in the ambient (the back pressure)- i.e. the flow has been expanded by the nozzle too much. [13] A further lowering of the back pressure changes and weakens the wave pattern in the jet.
Pressure drop (often abbreviated as "dP" or "ΔP") [1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe , or tube ).
Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat). In this situation, the nozzle is said to be choked. Increasing the nozzle pressure ratio further will not increase the throat Mach number above one.
The case of a converging-diverging nozzle allows a supersonic flow to occur, providing the receiver pressure is sufficiently low. This is shown in figure 3 assuming a constant reservoir pressure with a decreasing receiver pressure. If the receiver pressure is equal to the reservoir pressure, no flow occurs, represented by curve A.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
This type of spray nozzle may require more atomizing air and a higher atomizing air pressure drop because the mixing and atomization of liquid takes place outside the nozzle. The liquid pressure drop is lower for this type of nozzle, sometimes drawing liquid into the nozzle due to the suction caused by the atomizing air nozzles (siphon nozzle).
The high pressure steam coming from the boiler is expanded in the nozzle first. The Nozzle converts the pressure energy of the steam into kinetic energy. The total enthalpy drop and hence the pressure drop occurs in the nozzle. Hence, the pressure thereafter remains constant.
Nozzle type and capacity: full cone nozzles have the largest drop size, followed by flat spray nozzles. Hollow cone nozzles produce the smallest drop size. Spraying pressure: drop size increases with lower spraying pressure and decreases with higher pressure. Flow rate: flow rate has a direct effect on drop size.