When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linearity of differentiation - Wikipedia

    en.wikipedia.org/wiki/Linearity_of_differentiation

    In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; [1] this property is known as linearity of differentiation, the rule of linearity, [2] or the superposition rule for differentiation. [3]

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  4. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    The simplest way for writing the chain rule in the general case is to use the total derivative, which is a linear transformation that captures all directional derivatives in a single formula. Consider differentiable functions f : R m → R k and g : R n → R m, and a point a in R n.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) {\textstyle \arctan(y,x)} .

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  7. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...

  8. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  9. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The total derivative is a linear combination of linear functionals and hence is itself a linear functional. The evaluation d f a ( h ) {\displaystyle df_{a}(h)} measures how much f {\displaystyle f} points in the direction determined by h {\displaystyle h} at a {\displaystyle a} , and this direction is the gradient .