When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The simplex method is remarkably efficient in practice and was a great improvement over earlier methods such as Fourier–Motzkin elimination. However, in 1972, Klee and Minty [32] gave an example, the Klee–Minty cube, showing that the worst-case complexity of simplex method as formulated by Dantzig is exponential time. Since then, for almost ...

  3. Bland's rule - Wikipedia

    en.wikipedia.org/wiki/Bland's_rule

    With Bland's rule, the simplex algorithm solves feasible linear optimization problems without cycling. [1] [2] [3] The original simplex algorithm starts with an arbitrary basic feasible solution, and then changes the basis in order to decrease the minimization target and find an optimal solution. Usually, the target indeed decreases in every ...

  4. Revised simplex method - Wikipedia

    en.wikipedia.org/wiki/Revised_simplex_method

    The revised simplex method is mathematically equivalent to the standard simplex method but differs in implementation. Instead of maintaining a tableau which explicitly represents the constraints adjusted to a set of basic variables, it maintains a representation of a basis of the matrix representing the constraints. The matrix-oriented approach ...

  5. Constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction

    Other considered kinds of constraints are on real or rational numbers; solving problems on these constraints is done via variable elimination or the simplex algorithm. Constraint satisfaction as a general problem originated in the field of artificial intelligence in the 1970s (see for example (Laurière 1978)).

  6. Pattern search (optimization) - Wikipedia

    en.wikipedia.org/wiki/Pattern_search_(optimization)

    Example of convergence of a direct search method on the Broyden function. At each iteration, the pattern either moves to the point which best minimizes its objective function, or shrinks in size if no point is better than the current point, until the desired accuracy has been achieved, or the algorithm reaches a predetermined number of iterations.

  7. CPLEX - Wikipedia

    en.wikipedia.org/wiki/CPLEX

    The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).

  8. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    For less-than or equal constraints, introduce slack variables s i so that all constraints are equalities. Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0.

  9. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...