Search results
Results From The WOW.Com Content Network
A differential equation can be homogeneous in either of two respects. A first order differential equation is said to be homogeneous if it may be written (,) = (,), where f and g are homogeneous functions of the same degree of x and y. [1] In this case, the change of variable y = ux leads to an equation of the form
Consider the simple nonlinear second-order differential equation: ″ = (′). This equation is an equation only of y'' and y', meaning it is reducible to the general form described above and is, therefore, separable.
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
Sturm–Liouville theory is a theory of a special type of second-order linear ordinary differential equation. Their solutions are based on eigenvalues and corresponding eigenfunctions of linear operators defined via second-order homogeneous linear equations .
Consider the general, homogeneous, second-order linear constant coefficient ordinary differential equation. (ODE) ″ + ′ + =, where ,, are real non-zero coefficients. . Two linearly independent solutions for this ODE can be straightforwardly found using characteristic equations except for the case when the discriminant, , vanish
In mathematics, Abel's identity (also called Abel's formula [1] or Abel's differential equation identity) is an equation that expresses the Wronskian of two solutions of a homogeneous second-order linear ordinary differential equation in terms of a coefficient of the original differential equation.
If u(x) and v(x) are two non-trivial continuous linearly independent solutions to a homogeneous second order linear differential equation with x 0 and x 1 being successive roots of u(x), then v(x) has exactly one root in the open interval (x 0, x 1). It is a special case of the Sturm-Picone comparison theorem.
Order Equation Application Reference Abel's differential equation of the first kind: 1 = + + + Class of differential equation which may be solved implicitly [1] Abel's differential equation of the second kind: 1