When.com Web Search

  1. Ads

    related to: multiply vectors calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...

  3. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  4. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix.

  5. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Vectorization is used in matrix calculus and its applications in establishing e.g., moments of random vectors and matrices, asymptotics, as well as Jacobian and Hessian matrices. [5] It is also used in local sensitivity and statistical diagnostics. [6]

  6. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).

  7. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Red, green and blue arrows represent multiplication by i, j, and k, respectively. Multiplication by negative numbers is omitted for clarity. Because the product of any two basis vectors is plus or minus another basis vector, the set {±1, ±i, ±j, ±k} forms a group under multiplication.

  8. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    Matrix multiplication involves the action of multiplying each row vector of one matrix by each column vector of another matrix.. The dot product of two column vectors a, b, considered as elements of a coordinate space, is equal to the matrix product of the transpose of a with b,

  9. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The formalism of dyadic algebra is an extension of vector algebra to include the dyadic product of vectors. The dyadic product is also associative with the dot and cross products with other vectors, which allows the dot, cross, and dyadic products to be combined to obtain other scalars, vectors, or dyadics.