When.com Web Search

  1. Ads

    related to: non singular matrix properties examples geometry problems

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.

  3. M-matrix - Wikipedia

    en.wikipedia.org/wiki/M-matrix

    An M-matrix is commonly defined as follows: Definition: Let A be a n × n real Z-matrix.That is, A = (a ij) where a ij ≤ 0 for all i ≠ j, 1 ≤ i,j ≤ n.Then matrix A is also an M-matrix if it can be expressed in the form A = sI − B, where B = (b ij) with b ij ≥ 0, for all 1 ≤ i,j ≤ n, where s is at least as large as the maximum of the moduli of the eigenvalues of B, and I is an ...

  4. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    This generalization of the Vandermonde matrix makes it non-singular, so that there exists a unique solution to the system of equations, and it possesses most of the other properties of the Vandermonde matrix. Its rows are derivatives (of some order) of the original Vandermonde rows.

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  6. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The inflection points of the curve are exactly the non-singular points where the Hessian determinant is zero. It follows by Bézout's theorem that a cubic plane curve has at most 9 inflection points, since the Hessian determinant is a polynomial of degree 3.

  7. Idempotent matrix - Wikipedia

    en.wikipedia.org/wiki/Idempotent_matrix

    For example, in ordinary least squares, the regression problem is to choose a vector β of coefficient estimates so as to minimize the sum of squared residuals (mispredictions) e i: in matrix form, Minimize ( y − X β ) T ( y − X β ) {\displaystyle (y-X\beta )^{\textsf {T}}(y-X\beta )}