When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lead shielding - Wikipedia

    en.wikipedia.org/wiki/Lead_shielding

    Lead shielding refers to the use of lead as a form of radiation protection to shield people or objects from radiation so as to reduce the effective dose. Lead can effectively attenuate certain kinds of radiation because of its high density and high atomic number; principally, it is effective at stopping gamma rays and x-rays.

  3. Radiation protection - Wikipedia

    en.wikipedia.org/wiki/Radiation_protection

    Personal shielding against more energetic radiation such as gamma radiation is very difficult to achieve as the large mass of shielding material required to properly protect the entire body would make functional movement nearly impossible. For this, partial body shielding of radio-sensitive internal organs is the most viable protection strategy.

  4. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    Thunderstorms can produce a brief pulse of gamma radiation called a terrestrial gamma-ray flash. These gamma rays are thought to be produced by high intensity static electric fields accelerating electrons, which then produce gamma rays by bremsstrahlung as they collide with and are slowed by atoms in the atmosphere. Gamma rays up to 100 MeV can ...

  5. Nuclear fallout - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fallout

    For 1 MeV energy gamma rays, an exposure of 1 röntgen in air produces a dose of about 0.01 gray (1 centigray, cGy) in water or surface tissue. Because of shielding by the tissue surrounding the bones, the bone marrow only receives about 0.67 cGy when the air exposure is 1 röntgen and the surface skin dose is 1 cGy.

  6. Nuclear electromagnetic pulse - Wikipedia

    en.wikipedia.org/wiki/Nuclear_electromagnetic_pulse

    The typical gamma rays given off by the weapon have an energy of about 2 MeV (mega electron-volts). The gamma rays transfer about half of their energy to the ejected free electrons, giving an energy of about 1 MeV. [24] In a vacuum and absent a magnetic field, the electrons would travel with a current density of tens of amperes per square metre ...

  7. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    The decaying nucleus is called the parent radionuclide (or parent radioisotope), and the process produces at least one daughter nuclide. Except for gamma decay or internal conversion from a nuclear excited state, the decay is a nuclear transmutation resulting in a daughter containing a different number of protons or neutrons (or both).

  8. Commonly used gamma-emitting isotopes - Wikipedia

    en.wikipedia.org/wiki/Commonly_used_gamma...

    is about 662 keV. These gamma rays can be used, for example, in radiotherapy such as for the treatment of cancer, in food irradiation, or in industrial gauges or sensors. 137 Cs is not widely used for industrial radiography as other nuclides, such as cobalt-60 or iridium-192, offer higher radiation output for a given volume.

  9. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Gamma radiation, however, is composed of photons, which have neither mass nor electric charge and, as a result, penetrates much further through matter than either alpha or beta radiation. Gamma rays can be stopped by a sufficiently thick or dense layer of material, where the stopping power of the material per given area depends mostly (but not ...