When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.

  3. Electrical reactance - Wikipedia

    en.wikipedia.org/wiki/Electrical_reactance

    In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...

  4. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    The most important effect of skin effect on the impedance of a single wire is the increase of the wire's resistance, and consequent losses. The effective resistance due to a current confined near the surface of a large conductor (much thicker than δ ) can be solved as if the current flowed uniformly through a layer of thickness δ based on the ...

  5. Joule heating - Wikipedia

    en.wikipedia.org/wiki/Joule_heating

    The efficiency by which electricity is converted to heat depends upon on salt, water, and fat content due to their thermal conductivity and resistance factors. [13] In particulate foods, the particles heat up faster than the liquid matrix due to higher resistance to electricity and matching conductivity can contribute to uniform heating. [11]

  6. Electrical susceptance - Wikipedia

    en.wikipedia.org/wiki/Electrical_susceptance

    Reactance is defined as the imaginary part of electrical impedance, and is analogous to but not generally equal to the negative reciprocal of the susceptance – that is their reciprocals are equal and opposite only in the special case where the real parts vanish (either zero resistance or zero conductance). In the special case of entirely zero ...

  7. Siemens (unit) - Wikipedia

    en.wikipedia.org/wiki/Siemens_(unit)

    The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.

  8. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    The complex generalization of resistance is impedance, usually denoted Z; it can be shown that for an inductor, = and for a capacitor, =. We can now write, V = Z I {\displaystyle V=Z\,I} where V and I are the complex scalars in the voltage and current respectively and Z is the complex impedance.

  9. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]