Search results
Results From The WOW.Com Content Network
The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (a tree with no vertices, if such are allowed) has depth and height −1. A k-ary tree (for nonnegative integers k) is a rooted tree in which each vertex has at most k children.
The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero.
In graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of .This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of ...
2. The height of a rooted tree is the height of its root. That is, the height of a tree is the number of edges in a longest possible path, going away from the root, that starts at the root and ends at a leaf. 3. The height of a directed acyclic graph is the maximum length of a directed path in this graph. hereditary
In graph theory and theoretical computer science, the level ancestor problem is the problem of preprocessing a given rooted tree T into a data structure that can determine the ancestor of a given node at a given distance from the root of the tree. More precisely, let T be a rooted tree with n nodes, and let v be an arbitrary node of T.
Infinite trees considered in automata theory (see e.g. tree (automata theory)) are also set-theoretic trees, with a tree height of up to . A graph-theoretic tree can be turned into a set-theoretic one by choosing a root node r {\displaystyle r} and defining m < n {\displaystyle m<n} if m ≠ n {\displaystyle m\neq n} and m {\displaystyle m ...
It is also possible to interpret a binary tree as an undirected, rather than directed graph, in which case a binary tree is an ordered, rooted tree. [5] Some authors use rooted binary tree instead of binary tree to emphasize the fact that the tree is rooted, but as defined above, a binary tree is always rooted. [6]
A simple ternary tree of size 10 and height 2. In computer science, a ternary tree is a tree data structure in which each node has at most three child nodes, usually distinguished as "left", “mid” and "right". Nodes with children are parent nodes, and child nodes may contain references to their parents.