Ad
related to: reverse water gas shift reactor diagram for generator
Search results
Results From The WOW.Com Content Network
This is sometimes called the reverse water–gas shift reaction. [20] Water gas is defined as a fuel gas consisting mainly of carbon monoxide (CO) and hydrogen (H 2). The term 'shift' in water–gas shift means changing the water gas composition (CO:H 2) ratio. The ratio can be increased by adding CO 2 or reduced by adding steam to the reactor.
The first reaction, the reverse water gas shift reaction, is a fast one: CO 2 + H 2 → CO + H 2 O. The second reaction is the rate determining step: CO + H 2 → C + H 2 O. The overall reaction produces 2.3×10 3 joules for every gram of carbon dioxide reacted at 650 °C. Reaction temperatures are in the range of 450 to 600 °C.
Steam can be added to the reaction in order to increase the generation of H 2, via the water-gas shift reaction (WGS) and/or steam methane reforming. The CLR process can produce a syngas with a H 2:CO molar ratio of 2:1 or higher, which is suitable for Fischer–Tropsch synthesis, methanol synthesis, or hydrogen production. The reduced oxygen ...
In addition, the reversible gas phase water-gas shift reaction reaches equilibrium very fast at the temperatures in a gasifier. This balances the concentrations of carbon monoxide, steam, carbon dioxide and hydrogen: CO + H 2 O ⇌ CO 2 + H 2.
Water-gas-shift reaction. The reaction that occurs in a water-gas-shift reactor is CO + H 2 O CO 2 + H 2. This produces a syngas with a higher composition of hydrogen fuel which is more efficient for burning later in combustion. Physical separation process.
The water gas shift reaction is the reaction between carbon monoxide and steam to form hydrogen and carbon dioxide: CO + H 2 O ⇌ CO 2 + H 2. This reaction was discovered by Felice Fontana and nowadays is adopted in a wide range of industrial applications, such as in the production process of ammonia, hydrocarbons, methanol, hydrogen and other chemicals.
Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is often hydrogen production, although syngas has multiple other uses such as production of ammonia or methanol. The ...
In a second stage, additional hydrogen is generated through the lower-temperature, exothermic, water-gas shift reaction, performed at about 360 °C (680 °F): CO + H 2 O → CO 2 + H 2. Essentially, the oxygen (O) atom is stripped from the additional water (steam) to oxidize CO to CO 2. This oxidation also provides energy to maintain the reaction.