Search results
Results From The WOW.Com Content Network
Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms. As a third equivalent characterization, it is an infinite sequence of the form 1 a , 1 a + d , 1 a + 2 d , 1 a + 3 d , ⋯ , {\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}},\ {\frac {1}{a+2d}},\ {\frac {1}{a+3d}},\cdots ,}
The sequence 0, 3, 8, 15, ... is formed according to the formula n 2 − 1 for the nth term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, (sequence A000396 ...
Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic ...
For example, if s=2, then 𝜁(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly 𝜋²/6. When s is a complex number—one that looks like a+b𝑖, using ...
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. It can be used in conjunction with other tools for evaluating sums.
Sequences can be finite, as in these examples, or infinite, such as the sequence of all even positive integers (2, 4, 6, ...). The position of an element in a sequence is its rank or index; it is the natural number for which the element is the image. The first element has index 0 or 1, depending on the context or a specific convention.